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FSNet: Dual Interpretable Graph Convolutional
Network for Alzheimer’s Disease Analysis
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Abstract— Graph Convolutional Networks (GCNs) are widely
used in medical images diagnostic research, because they can
automatically learn powerful and robust feature representations.
However, their performance might be significantly deteriorated
by trivial or corrupted medical features and samples. Moreover,
existing methods cannot simultaneously interpret the significant
features and samples. To overcome these limitations, in this paper,
we propose a novel dual interpretable graph convolutional network,
namely FSNet, to simultaneously select significant features and
samples, so as to boost model performance for medical diagnosis
and interpretation. Specifically, the proposed network consists of
three modules, two of which leverage one simple yet effective
sparse mechanism to obtain feature and sample weight matrices
for interpreting features and samples, respectively, and the third
one is utilized for medical diagnosis. Extensive experiments on
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) datasets
demonstrate the superior classification performance and inter-
pretability over the recent state-of-the-art methods.

Index Terms—Alzheimer’s disease diagnosis research,
feature interpretability, graph convolutional network, sample
interpretability.

I. INTRODUCTION

A LZHEIMER’S disease (AD) is one of the most common
clinical neurodegenerative diseases, which can severely

degrade the quality of life of the elderly [7], [10]. Unfortunately,
now there is no fundamental medical treatment to cure AD.
Since early intervention is an effective way to slow down its
deterioration, neuroimaging techniques, like Magnetic Reso-
nance Imaging (MRI), are widely used for early diagnosis by
providing accurate information about the state of the brain [1],
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[19]. However, manually examining neuroimaging data is
laborious and time consuming. Thus, machine learning tech-
niques, which are promising to reduce the workload of neurol-
ogists in the future [6], have been widely employed for medical
images diagnostic research.

Since each feature might have a different contribution for data
classification [28], [35], traditional machine learning methods,
like Random Forest [27], rank the importance of features for
classification or select significant features to interpret classifi-
cation results. But they usually provide poor diagnostic perfor-
mance due to the lack of ability on extracting powerful feature
representations, thereby leading to unconvincing interpretation
results [33]. Deep learning methods have been demonstrated the
powerful capability on extracting discriminative feature repre-
sentations with a large amount of high quality training data [5],
[39]. However, most deep learning methods cannot directly
interpret the significance of features, and thus fail to provide
interpretable diagnosis results, which is one major concern in
the medical domain. Additionally, it is difficult to obtain a large
number of data with accurate labels and clean features in medical
domain, due to expensive costs and environmental diversity of
data acquisition and subjective assessment of clinicians [18],
which would decrease the performance of deep learning meth-
ods. Therefore, it is a very challenging task to employ a small
number of medical training samples to attain interpretable and
robust results for deep learning methods.

Graph Convolutional Networks (GCN) is a widely used deep
learning framework for Alzheimer’s disease diagnosis research
and analysis, because they simultaneously consider semantic
information and structure information, and can produce more
accurate classification results than traditional machine learning
methods on a small number of training samples [19], [20], [31].
However, GCNs cannot directly interpret the significance of
features, and thus it usually utilizes the post-hoc interpretable
strategy, which discovers significant features using an explana-
tory model after the well-trained classification model, thereby
consuming more time and possibly causing inferior classifica-
tion and interpretability performance [36]. To overcome these
limitations, most recently, [15] proposed an interpretable frame-
work to discover the most significant features during model
training. But this framework neglects features weights, which
are also very significant for data classification.

Another limitation of most existing interpretable GCNs is
that they do not consider the different significance of training
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Fig. 1. The architecture of our proposed FSNet with three modules: feature interpretation, sample interpretation and classification. The feature and sample
interpretation modules aim to attain sparse weight matrices Wf and Ws to interpret the significance of features and samples, respectively. The sample classification
module only employs the significant features and samples for classification. Note that the sample interpretation and classification modules share the same parameters.
All these three modules are jointly conducted to obtain AD diagnostic results in an end-to-end learning manner.

samples, which usually contain corrupted labels or features,
thereby deteriorating model performance. Although several
deep learning methods employ self-paced learning to guide
model training by ranking the significance of training sam-
ples [14], [24], [32], they usually require some clean samples
to assist in training [21] to attain good performance. This might
restrict their applications. Additionally, they fail to simultane-
ously take the feature significance into consideration, leading
to the sub-optimal model performance. Therefore, it is very
necessary to simultaneously interpret the significance of features
and samples during model training.

In this paper, we propose a novel dual interpretable graph
convolutional network, namely FSNet, to address the aforemen-
tioned issues, i.e., simultaneously interpreting the significance
of features and samples during model training. For clarity, we
present the architecture of FSNet in Fig. 1. Specifically, it utilizes
two sub-networks corresponding to two modules, FGCN and
SGCN, to obtain sparse feature and sample weight matrices for
selecting significant features and samples, respectively. Then,
the third module utilizes SGCN for classification.

We summarize three major contributions of this paper as
follows:
� We propose a novel graph convolutional network to simul-

taneously interpret the significance of both features and
samples in early-stage AD diagnosis.

� Different from previous interpretation methods without
considering the weights of features or samples, we pro-
pose a simple yet effective interpretation mechanism with
selecting significant features or samples and meanwhile
assigning weights to them. Additionally, experiments

demonstrate that considering the weights is beneficial to
AD diagnosis.

� Extensive experiments on four AD datasets demonstrate
that the proposed network outperforms recent state-of-
the-art methods on classification and interpretation perfor-
mance.

The rest of the paper is organized as follows. Section II
introduces the proposed dual interpretable graph convolutional
network; Section III shows and analyzes experimental results of
various methods; Finally, Section IV concludes this paper and
points out the future work.

II. METHOD

In this section, we will introduce the proposed dual inter-
pretable graph convolutional network, FSNet. As shown in
Fig. 1, FSNet has three modules, specifically, feature interpre-
tation adopts FGCN to attain a sparse feature weight matrix,
sample interpretation utilizes SGCN to attain a sparse sam-
ple weight matrix, and sample classification employs SGCN
for sample classification. Additionally, in this paper, X =
[x1,x2, . . . ,xn] ∈ Rn×d represents a matrix with n samples,
xi ∈ Rd (1 ≤ i ≤ n) denotes the i-th sample with d features,
and xik is the k-th feature of the i-th sample.

A. Feature Interpretation

To generate feature weight matrix Wf ∈ Rn×d for interpret-
ing the significance of features, differing from that using the
sample as nodes, we innovatively consider each feature as one
node and obtain Wf by the following steps.
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Fig. 2. Procedure for obtaining the sparse feature weight matrix and the red

dashed boxes indicate the selected important features. Specifically, X̃(L)
n ∈

Rd×nL is the embedding matrix with d features after graph convolution, and
then for each row vector, we utilize the L2,1-norm to obtain the weight vector
wf ∈ Rd. Finally, wf is considered as a row vector and then replicated n times
by rows to attain the final feature weight matrix Wf ∈ Rn×d.

Specifically, we transpose X to obtain X̃, i.e., X̃ = XT ∈
Rd×n, and then utilize each feature as the node to generate an
adjacency matrix S ∈ Rd×d to describe the correlations among
features. The specific generation steps from a feature matrix
X̃ to the adjacency matrix S can be found in (10) shown in
Section III. After obtaining S, given an L-layer graph convolu-
tional network, FGCN, which is specifically used to aggregate
the neighbor information of each feature. Let X̃(0) = X̃ denote
the input of the network and feed it with S into the network to
obtain a feature embedding representation X̃l+1, which can be
represented by:

X̃(l+1) = σ(D̃−1/2ŜD̃−1/2X̃(l)Θ
(l)
f ), (1)

where l = 0, . . ., L− 1, X̃l+1 and X̃(l) ∈ Rd×nl+1 are the out-
put of the l + 1-th and l-th layer, respectively, Ŝ = S+ Id, D̃ =
diag(d̃1, . . ., d̃d) is a diagonal matrix with d̃i =

∑n
j=1(Ŝij),

Θ(l)
s ∈ Rnl×nl+1 represents the parameters of the l + 1-th layer,

and σ(·) represents an activation function.
After theL-layer graph convoluition, we can obtain an embed-

ding representation X̃(L) = [x̃0
(L), x̃

(L)
1 , . . ., x̃

(L)
n ] ∈ Rd×nL

and then we can utilize X̃(L) to generate Wf .
Here, our goal is to obtain the weight of each feature based

on its embedding representation X̃(L), and when the i-th feature
is trivial, its corresponding weight should be very small or even
zero. Under such conditions, the L2,0-norm is the most suitable
constraint for removing the redundant features by controlling
sparsity while maintaining as much original information as
possible [9]. However, the L2,0-norm is non-convex and non-
differential so that it is very difficult to optimize [4]. Hence,
following the same strategy in [34], we utilize the L2,1-norm
to calculate the weight of each feature, because the L21-norm
is the minimum convex hull of the L2,0-norm and it can also
encourage row sparsity.

The procedure has been shown in Fig. 2. Firstly, let wf =
[wf,1, wf,2, . . ., wf,d] ∈ Rd be a weight vector, where wf,i ∈
wf is the weight of the i-th feature, we calculate wf,i by
employing the L21-norm as follows:

wf,i =

√√√√ nL∑
j=1

(x̃
(L)
ij )2. (2)

Secondly, in order to find the significant features and then
only adopt them to optimize the model for training, we select
Kf features corresponding to the top Kf weights and set the
weights of the remaining features as 0. Hence, the weight for
the i-th node is updated as:

wf,i =

{
wf,i if wf,i > wf,Kf

0 otherwise,
(3)

where wf,Kf
is the Kf -th largest weight in wf .

As we can see, (3) can maintain the significant features
and their weights and meanwhile remove the trivial features
(redundancy or noise) during model training.

Thirdly, we utilize the weight vector wf as a row vector and
replicate itn times to obtain a feature weight matrixWf ∈ Rn×d

with the same size as the matrixX for subsequent model training.
For example,

Wf =

⎡
⎢⎢⎢⎢⎣

wf,1 wf,2 . . . wf,d

wf,1 wf,2 . . . wf,d

. . . . . .
. . . . . .

wf,1 wf,2 . . . wf,d

⎤
⎥⎥⎥⎥⎦ (4)

For clarity, we present the procedure to obtain the sparse
weight matrix Wf in Fig. 2.

B. Sample Interpretation

Because training samples also have different significance,
here, we present the process for sample interpretation. Given
an L-layer graph convolutional network, SGCN, the matrix
X(0) = X ∈ Rn×d and the adjacency matrix A ∈ Rn×n con-
taining the sample correlations, we conduct graph convolution
to aggregate feature representations among their neighbors. The
process can be formulated as:

X(l+1) = σ(D−1/2ÂD−1/2X(l)Θ(l)
s ), (5)

where Â = A+ In, D = diag(d1, . . .,dn) is a diagonal ma-
trix with di =

∑n
j=1(Âij), and Θ(l)

s ∈ Rdl×dl+1 represents the
parameters of the l + 1-th layer.

Next, we can obtain the sample weight matrix Ws ∈
Rn×d by using the same three steps as that attaining Wf .
Specifically, we first obtain a sample weight vector ws =
[ws,1, ws,2, . . ., ws,n] ∈ Rn based on (2); Then, same as (3), we
can updatews to retainKs samples with topKs weights; Finally,
we replicate the updated weight vector ws by d times and then
transpose it to obtain the sample weight matrix Ws ∈ Rn×d.

In summary, our proposed method simultaneously considers
the feature information of each sample and the structural in-
formation among samples to obtain the sample weight matrix.
Meanwhile, it can filter out the trivial samples (e.g., samples
with corrupted labels or features).

C. GCN Classification

There exists many node classification methods, such as
GCN [12], GraphSage [8], GAT [30], but they treat each node
and their features equally, thereby possibly leading to sub-
optimal results in many cases. Differing from them, the proposed
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network simultaneously takes into account the weights of both
features and samples during model training, in order to obtain
superior performance.

In this paper, we perform Hadamard product operation on the
feature weight matrix Wf and the sample weight matrix Ws

with the input X to obtain a new matrix Xfs ∈ Rn×d, which is
calculated by:

Xfs = X�Wf �Ws, (6)

where � denotes the Hadamard product operation, i.e., two
matrices are multiplied element by element. Each feature
in one sample has its own weight, and then we feed Xfs

and the adjacency matrix A into a graph convolutional
network.

Because using two completely different networks to extract
feature representations will increase the model complexity with
consuming more training costs. To reduce the model complexity
and training time costs, we utilize SGCN for classification. This
means Xfs and X are fed into the same sub-network. Hence,

in the l + 1-th layer, its output matrix X
(l+1)
fs can be formulated

as:

X
(l+1)
fs = σ(D−1/2ÂD−1/2X(l)

fsΘ
(l)
s ), (7)

where the parameters have the same meaning as (5). Xfs can
share the graph convolution with X, because it is just the result
of adding weights onto X (see (7)).

After L graph convolutional layers, we can obtain the output
matrix XL

fs = [xL
0 ,x

L
1 , . . .,x

L
n ] ∈ Rn×c, and then obtain their

predicted label probabilities by using the softmax function,
e.g.,Z = [z0, z1, . . ., zn−1] ∈ Rn×c, where zi ∈ Rc denotes the
label prediction of the i-th sample and zij is its probability
belonging to the j-th class. It is calculated as follows:

zij = softmaxj
(
xL
ij

)
=

exp
(
xL
ij

)
∑

m∈n exp
(
xL
im

) . (8)

Finally, we employ the cross-entropy function for model train-
ing, it is:

Loss = −
∑
i∈N

c∑
j=1

yij ln zij , (9)

whereN is defined as the set of labeled samples. By minimizing
(10), we can obtain the optimal graph convolutional parameters
Θf = {Θ0

f , . . .,Θ
L
f } and Θs = {Θ0

s, . . .,Θ
L
s }. For clarity, we

present the detailed procedure of the proposed FSNet in Algo-
rithm 1.

III. EXPERIMENTS

A. Experimental Setup

1) Datasets Description: Raw digital images were down-
loaded from the ADNI database. All MRI images used in our
experiments were 1.5 T T1-weighted MRI data. Firstly, those
raw images pre-processed by the way described in [23], in-
cluding removing non-brain tissue, correcting for motion and
time, registration, filtering and smoothing. After obtaining the

Algorithm 1: FSNet.

Input: X ∈ Rn×d, X̃ ∈ Rd×n, label information Y, and
hyperparameters Kf , Ks and T .

1: Initialization: GCN parameters Θf , Θs.
2: while epoch < T do
3: X̃l+1 ← {X̃,S,Θf} by (1);
4: Wf ← {X̃l+1,Kf} by (2), (3) and (4);
5: Xl+1 ← {X,A,Θs} by (5);
6: Ws ← {Xl+1,Ks} by (2), (3) and (4);
7: Xfs ← {X,Wf ,Ws} by (6);
8: Z← {Xfs,A,Θs} by (7);
9: Loss← {Y,Z} by (8);

10: Back-propagate Loss to update model parameters;
11: end while
Output: Z, Wf , Ws.

TABLE I
THE NUMBER OF SAMPLE IN ADNI DATASETS

pre-processed MRI images, we further segmented those images
into three different tissues: gray matter, white matter, and cere-
brospinal fluid, and then warped them into Jacob template [11]
to obtain 93 brain regions. Finally, we extracted the gray matter
volume of each brain region as one feature and in this way
each subject (patient) could be represented by a 93-dimensional
feature vector.

In our experiments, we totally processed 805 subjects, which
included 186 AD patients, 393 Mild Cognitive Impairment
(MCI) patients, and 226 normal controls (NC). Furthermore,
393 MCI patients included 226 MCI converters (MCIp) and 167
MCI non-converters (MCIn). Next, we divided these samples
into four binary datasets (i.e., AD-NC, AD -MCI, NC-MCI, and
MCIn-MCIp). The number of samples of four binary datasets is
summarized in Table I.

2) Graph Construction: Considering that the patients with
the same class might contain some similar characteristics, the
diagnostic study of Alzheimer’s disease in [40] utilizes both the
feature information and the structural information to produce
better classification performance. Structural information refers
to the connections between patients and is usually represented as
an adjacency matrix. However, in this paper, the initial input X
only contains the features of each patient without considering
their correlations. Here, we not only construct the adjacency
matrix A ∈ Rn×n to describe the relations among samples,
but also build the adjacency matrix S ∈ Rd×d to describe the
relations among features.

To calculate the similarity between any two different features,
we utilize the inverse of the distance between the i-th and j-th
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features as follows:

sij =
1√∑n

k=1(xki − xkj)2
, (10)

where i �= j and sij denotes the similarity between the i-th and
j-th features.

Then, based on the popular method K Nearest Neighbors
(KNN), we select the top K similar features for each feature and
set their weights as 1 and the weights of the remaining features
as 0, respectively, e.g.,

sij =

{
1 if sij > s̃iK
0 otherwise,

(11)

where s̃iK is the K-th largest similarity in the remaining d− 1
features for the i-th feature. But this will generate an asymmetric
matrix S. To attain a symmetric adjacency matrix S, we update
it by S = (S+ ST )/2.

Similar to the adjacency matrix S, we can obtain A based on
(10) and (11) by calculating the similarity among samples.

3) Comparison Methods: The comparative methods in-
clude 3 traditional machine learning methods and 7 deep learn-
ing methods, we list their details as follows:
� L1-Norm Support Vector Machines(L1SVM) [38] uti-

lizes SVM to complete the classification task, while using
L1-norm to select important features.

� Sparse Learning Support Vector Machines (SLSVM) [17]
adopts SVM to conduct the classification task, while using
sparse learning to control the sparsity of the feature matrix
and obtain important features.

� Random Forest (RF) [27] integrates multiple base learners
(e.g., decision tree) to form a strong classifier and ranks the
importance of features during training.

� Adaptive boosting(Adaboost) [22] optimizes model train-
ing by continuously boosting the weights of misclassified
samples.

� Graph Convolutional Network (GCN) [12] leverages both
the feature information and structural information of nodes
to obtain robust feature representations.

� Graph Attention Network (GAT) [30] employs multi-head
attention mechanisms to assign link weights between nodes
and gradually adjusts the adjacency matrix to the optimum.

� Attention-based Graph Neural Network(AGNN) [29] re-
places the fully-connected layers of the GCN model with
the propagation layers under attention mechanisms, so as
to learn a dynamic and adaptive neighborhood.

� Approximate personalized propagation of neural predic-
tions (APPNP) [13] combines GCN with PageRank to
aggregate information from more distant neighbors without
adding redundant graph convolutional parameters.

� Sample Reweight (SR) [21] utilizes the clean verification
set to calculate the weight of each sample for reweighting
all samples.

� Meta-Weight Net (MWN) [26] adopts a MLP to produce
adaptive sample weights to weight the loss function as well
as the clean verification set to guide model training.

� Interpretable Dynamic Graph Convolutional Networks
(IDGCN) [40] integrates dynamic graph learning and
graph convolution to learn the optimal graph structure and
provides feature interpretability.

Traditional machine learning methods (i.e., L1SVM, RF and
Adaboost) do not construct graphs to leverage the structural
information among samples or features. Meanwhile, for the
deep learning methods, we consider structural information by
constructing the adjacency matrix into GCNs. Additionally,
all deep learning methods are trained in a supervised manner.
Moreover, we compare SFNet with L1SVM, RF and IDGCN
on feature interpretability. Similarly, we compare SFNet with
Adaboost, SR and MWN on sample interpretability.

4) Experimental Setting: We conducted our experiments
by using the framework PyTorch on a server with 8 NVIDIA
GeForce 3090 (24 GB memory each).

To better compare the aforementioned methods with the pro-
posed FSNet on a small number of sample data, we adopted the
five-fold cross-validation and independently conducted cross-
validation experiments 20 times for all methods on four datasets.
Finally, we reported their average results.

We evaluated all methods by using four popular metrics,
including classification accuracy, specificity, sensitivity and the
AUC score. Additionally, in AD diagnosis, besides the four eval-
uation metrics mentioned above, we also presented interpretabil-
ity results on selecting significant features (brain regions) and
samples.

5) Implemental Details: We adjusted hyper-parameters
for each method by referring to the corresponding literature
to output their best results. For our method, we set the maxi-
mum epochs as 500, the learning rate as 0.005, and two graph
convolutional layers, i.e. L = 2 in (1), (5) and (7). We also
set Kf = d× λf , where d is the number of features, λf ∈
{0.1, 0.2, . . ., 1} and Ks = n× λs, where n is the number of
samples, λs ∈ {0.1, 0.2, . . ., 1} is utilized to obtain the best
classification performance on four datasets, respectively. And
we also list optimal λf and λs on four datasets in the appendix
section. Based on feature weight vector wf and sample weight
vector ws, we regard the features and samples with weights
larger than 0 as significant ones, and the other with weights of
0 are trivial features or samples.

B. Results and Analysis

1) Classification Results: Tables II and III present the clas-
sification performance of all methods on four datasets, where
we bold the best result of each metric in this dataset. They
illustrate that: 1) Deep learning methods usually obtain superior
performance over the traditional machine learning methods on
the four datasets in most of cases. 2) The proposed FSNet can
obtain the best results, including accuracy (ACC), sensitivity
(SEN), specificity (SPE) and AUC scores, among all methods on
the four datasets in almost all cases. Specifically, FSNet obtains
slightly higher results than comparative methods on AD-NC
and AD-MCI datasets in term of the four metrics except SEN on
AD-MCI, and it achieves significantly better results than the best
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TABLE II
THE CLASSIFICATION PERFORMANCE ON AD-NC AND AD-MCI DATASETS. WE BOLD THE BEST RESULT IN EACH SETTING

TABLE III
THE CLASSIFICATION PERFORMANCE ON NC-MCI AND MCIN-MCIP DATASETS. WE BOLD THE BEST RESULT IN EACH SETTING

competitors on NC-MCI and MCIn-MCIp datasets. For instance,
on NC-MCI, the results of FSNet is 4.3%, 2.4%, 3.5% and 4.0%
over the best competitors in term of ACC, SEN, SPE and AUC,
respectively.

The possible reasons for aforementioned two observations
are: 1) Traditional machine learning methods cannot extract
powerful discriminative feature representations compared to
deep learning methods, and they also fail to leverage the cor-
related relationship among samples. Hence, they obtain infe-
rior classification performance to deep learning methods, even
though they can interpret the significance of features or samples.
2) Although the deep learning methods can utilize the adjacency
matrix to extract powerful features, they either do not consider
the significance of both samples and features or only take into
account one of them. By contrast, our method can simultane-
ously take into account the significance of both samples and
features, and meanwhile employ them to guide model training
for classification.

2) Feature Interpretability: To evaluate the feature inter-
pretability of the proposed FSNet, we compare it with three fea-
ture interpretation methods, such as L1SVM, RF and IDGCN.
Specifically, we implement the four methods 20 times using
the five-fold cross-validation, thereby totally running feature

selections 100 times on the four datasets, and each time records
the 20 most significant features. Therefore, we can count the
frequency of each feature during the 100 feature selections.
Finally, the 20 features with the highest number of occurrences
were selected as the significant features of the method.

Tables IV and V display the indexes of top 20 features and
their orders of importance on the four datasets. Additionally, we
show the name of brain regions corresponding to the features in
the appendix. Moreover, we visualized the brain regions selected
by the four methods on the AD-NC dataset in Fig. 3.

a) Ranking performance evaluation: The literature [2]
demonstrates that the most associated brain regions with AD are
hippocampal formation (30, 69) and amgydata (76, 83). Based
on Tables IV and V, we can observe that all the four methods
can select all or most of the four most important brain regions.
However, the four methods obtain inconsistent rank orders of
brain regions. To further compare the performance of FSNet with
the others in terms of feature interpretability, we present their
ranking performance evaluated by using the average precision
(AP) [3], which is defined as:

AP =

∑Ntotal

i=1 (P (i) ∗ e(i))
Nimp

, (12)
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TABLE IV
THE INDEXES OF TOP 20 IMPORTANT BRAIN REGIONS ON AD-NC AND AD-MCI. THE BOLD NUMBER DENOTES THE MOST RELEVANT BRAIN REGIONS FOR THE

AD DISEASE FOUND BY EACH METHOD

TABLE V
THE INDEXES OF TOP 20 IMPORTANT BRAIN REGIONS ON NC-MCI AND MCIN-MCIP. THE BOLD NUMBER DENOTES THE MOST RELEVANT BRAIN REGIONS FOR

THE AD DISEASE FOUND BY EACH METHOD

Fig. 3. Top 20 brain regions selected on the AD-NC dataset by four methods.

where Nimp and Ntotal represent the number of important and
all brain regions in the sequence, respectively; e(i) ∈ {0, 1}
denotes whether the i-th brain region is important or not andP (i)
is the accuracy of the first i brain regions containing important
ones, i.e.,

P (i) =
mi

i
, (13)

where mi is the number of searched important brain regions in
the first i brain regions.

In our experiments, we regard hippocampal formation (30, 69)
and amgydata (76, 83) as important features. Then, we calculated
the AP for each sequence in Tables IV and V based on (12)
and (13), and displayed the results of the four methods in
the first part of Table VI. As we can see, the AP of FSNet
is higher than that of the best competitors by 0.127, 0.163
and 0.237 in AD-NC, AD-MCI and MCIn-MCIp, respectively.
Only in the NC-MCI, the AP of RF is slightly higher (0.013)
than that of FSNet. These results illustrate the effectiveness of
our method, which has superior ranking performance over the
others.

In addition, the precentral gyrus (5, 55) and parahippocampal
gyrus (17, 78) are also considered to be closely related to AD
in [16] and referred to them as sub-important brain regions. For
these sub-important brain regions, FSNet could also obtain better

TABLE VI
AP WITH THE IMPORTANT BRAIN REGIONS ON TOP 20 SELECTED FEATURES.

WE BOLD THE BEST RESULT IN EACH DATASET

selection and ranking performance. For clarity, we present their
ranking performance in the middle part of Table VI.

Based on Tables IV–V, and the first two parts of Table VI,
we can find that our proposed FSNet can select and assign
high weights to sub-important brain regions, while other feature
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Fig. 4. The classification accuracy at different rates of features on four datasets.

selection methods are difficult to find or obtain good ranking
performance. Therefore, when we regard the aforementioned
eight features as important ones, the third part of Table VI shows
that FSNet has a substantially better ranking performance over
the others on all the four datasets. This also indicates the strength
of our method on feature interpretation.

b) Classification performance evaluation: The evaluation
of the important brain regions indexes referred to the priori med-
ical knowledge. Next, we evaluate them by using the classifica-
tion performance. Because a small number of high-dimensional
data usually contain redundant or corrupted features. One of the
most common strategies is to firstly perform feature selection
and then only employ the selected features for model training
again, since this strategy can reduce the complexity of model
training and obtain superior classification performance with
better interpretability [25], [37]. Based on this strategy, Fig. 4
shows the classification performance of the four methods on four
datasets. As we can see, 1) All the four methods using part of
full features can achieve or exceed the classification performance
using full features on all four datasets. This suggests that there
exist some redundant or corrupted features in the four datasets.
For example, in the AD-NC dataset, FSNet using only 50% of
the features can obtain a very similar accuracy to that using full
features, and it obtains the best accuracy at using 80% of full
features. 2) Although each method achieves the best accuracy
of itself by using different numbers of features, the proposed
FSNet consistently outperforms all comparative methods. This
also infers the strength of our method in terms of feature inter-
pretability.

Based on all the above analysis, we can conclude that:L1SVM
has poor classification and interpretability results; RF can ob-
tain good interpretability results even though its classification
performance is ordinary; IDGCN can obtain good classification
results, but its interpretability results are relatively poor; only
FSNet obtains the best interpretability results as well as classi-
fication performance.

3) Sample Interpretability: For sample interpretability, the
most distinctive difference with feature is that we cannot know
which samples are actually important based on a priori knowl-
edge. Therefore, we cannot directly evaluate the sample inter-
pretability only using the sample indexes and weights, which
strategy is used for feature interpretability.

Therefore, we evaluate sample interpretability by using only
the classification performance. We compare the proposed FSNet

with three comparative methods, such as Adaboost, SR and
MWN. Specifically, we first utilize the four methods to select
significant samples and then employ them for model training
again. Note that we found when the sample size was reduced
to less than 30% of full samples in the experiments, the loss
on the training set did not converge and continued to have
large fluctuations, indicating training failed. Therefore, we only
conducted experiments with sample sizes over 30%.

Fig. 5 presents the classification results on different selected
rates of samples. We have the following observations: (1) All the
four methods select only 70%-90% important samples involved
in training can achieve the best classification performance of
themselves on the three datasets, including AD-MCI, NC-MCI
and MCIn-MCIp. However, in AD-NC, all the four methods
need to employ all samples to obtain the highest accuracy.
They suggest the three datasets, including AD-MCI, NC-MCI
and MCIn-MCIp, contain corrupted samples. (2) FSNet obtains
the best performance on sample interpretability. At different
rates, our method can obtain higher accuracy than the others
on all the four datasets. For example, FSNet achieves 5.1%
higher accuracy than the best competitor, SR, on the NC-MCI
dataset.

C. Ablation Analysis

To investigate the effects of feature and sample interpretability
on model classification, we conduct experiments on four condi-
tions: 1) Without interpreting the significance of both features
and samples; 2) Only considering feature interpretability; 3)
Only considering sample interpretability; and 4) Considering
both feature and sample interpretability.

Fig. 6 shows the classification results of the proposed FSNet
under the four conditions. It illustrates that 1) Interpreting the
significance of features or samples can boost model classifica-
tion performance and whether feature or sample is more impor-
tant depending on the dataset; 2) Simultaneously interpreting
the significance of features and samples can further boost model
performance on all the four datasets, compared to that only
interpreting one of them, which indicates that the two parts of
our FSNet are important.

D. Hyper-Parameters Analysis

We investigate the influence of two hyper-parameters (λf and
λs) in our FSNet. They control the sparsity of features and
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Fig. 5. The classification accuracy at different rates of samples on four datasets.

Fig. 6. Ablation study: the classification performance under four conditions.

Fig. 7. The classification accuracy of FSNet at different parameter settings on
λf and λs.

samples in our FSNet, respectively. Specifically, we conduct
experiments by ranging their values from 0.2 to 1 and visualize
the classification results on all datasets in Fig. 7.

As shown in Fig. 7, the performance of FSNet is rela-
tively poor when λf and λs are during the range of [0.2, 0.6].

However, it can achieve an optimal or near-optimal classification
performance when selecting 80% of the features and samples
from the four datasets. This suggests that FSNet is not sensitive
to parameters and we can empirically set λf = λs = 0.8 in most
cases.

E. Discussion

In this section, we present a comprehensive discussion of our
FSNet in AD diagnosis in terms of classification performance,
feature interpretability, and sample interpretability. For classi-
fication performance, the proposed FSNet has promising and
superior performance over the others on all the four datasets,
probably because we select and weight features and samples
during model training. In terms of feature interpretability, we
utilize both the priori medical knowledge and classification
performance to illustrate that FSNet can achieve better feature
selection performance than L1SVM, RF and IDGCN, and fea-
ture selection can boost model performance, which suggests that
there are existing redundant or corrupted features in the ADNI
database. For sample interpretability, by continuously adding
important samples to the model for classification, FSNet also
has better or at least competitive performance to the others on
sample interpretability. This is because FSNet can select and
meanwhile weight the significant samples to avoid or mitigate
the effects of noise. Therefore, FSNet can not only obtain
excellent classification performance, but also attain promising
feature and sample interpretability by selecting and weighting
significant features and samples.

IV. CONCLUSION

In this paper, we propose a novel graph convolutional network,
FSNet, for AD diagnosis with simultaneously obtaining feature
and sample interpretability. To fulfill this goal, we employ
two sub-networks by using the L2,1-norm to select signifi-
cant features and samples, respectively. Experimental results
demonstrated the strength of the proposed network in terms
of classification performance and interpretability, compared to
state-of-the-art methods.

In the experiments, we only validate the proposed method by
using the single-view data, which contains limited information,
thereby possibly restricting its model performance. In the future,
we will investigate its performance on multi-view data, such as
PET, fMRI and sMRI.
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APPENDIX

Fig. 8. The names of the selected brain regions in this work.

TABLE VII
OPTIMAL PARAMETERS ON FOUR BINARY DATASETS
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